If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-15t-50=0
a = 4.9; b = -15; c = -50;
Δ = b2-4ac
Δ = -152-4·4.9·(-50)
Δ = 1205
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{1205}}{2*4.9}=\frac{15-\sqrt{1205}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{1205}}{2*4.9}=\frac{15+\sqrt{1205}}{9.8} $
| A^2+b^2=24^2 | | 0.03a^2-0.06a+0.01=0 | | 3x²-9x-3=0 | | 2w+8w+7=0 | | 84=12x+2 | | 10w+8w+7=0 | | 4.9x-16.44=6.1 | | 4x(x^2+8x+12)=0 | | 4x(x^2+8x-12)=0 | | 4(7-10)=y-5 | | x^2+2000x+1000000=0 | | -4+7+n=-1+6 | | -23+7+n=-2+19 | | 5(x-8)=4x+15 | | 14m+50=-m2 | | 14m+50=-m^2 | | (2x-10)+(x-5)=(180-x) | | (2x-10)+(x-5)=180 | | 20=2.5^x | | 2x-10+4x+4x+10=180 | | X-9x=-32 | | (32x+x)(x)=(3x)(3x+8) | | 2y^2-34y+120=0 | | 9(m+5)=15 | | ((2x-7)/6)+3=27 | | 3c^2+10c-5=0 | | 9(7x–2)–10=36 | | 5(3x–1)+3=13 | | 3c2+5c-4=0 | | |-7x-8|=1 | | X=7+(5r) | | 3c^2+5c-4=0 |